Best Available Control Technology (BACT) Guideline 1.1.1*

Last Update: 11/30/2022

Natural gas or propane fired boilers/steam generators** with heat input rate greater than 5 MMBtu/hr and less than or equal to 20 MMBtu/hr

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	PUC quality natural gas or propane with LPG backup		
SOx	PUC quality natural gas or propane with LPG backup		
PM10	PUC quality natural gas or propane with LPG backup		
NOx	5 ppmvd @ 3% O2 (0.0061 lb/MMBtu)		
СО	50 ppmvd @ 3% O2 (0.037 lb/MMBtu)		

^{*} This is a Summary Page for this Class of Source.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

^{**} This guideline is applicable to units fired solely on natural gas from a PUC or FERC regulated source or propane/LPG. This guideline is not applicable to Oilfield Steam Generators or Electric Utility Steam Generating Units.

Best Available Control Technology (BACT) Guideline 1.1.2*

Last Update: 11/30/2022

Natural gas or propane fired boilers/steam generators** with heat input rate greater than 20 MMBtu/hr

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	PUC quality natural gas or propane with LPG backup		
SOx	PUC quality natural gas or propane with LPG backup		
PM10	PUC quality natural gas or propane with LPG backup		
NOx	2.5 ppmvd @ 3% O2 (0.003 lb/MMBtu)		
СО	50 ppmvd @ 3% O2 (0.037 lb/MMBtu)		

^{*} This is a Summary Page for this Class of Source.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

^{**} This guideline is applicable to units fired solely on natural gas from a PUC or FERC regulated source or propane/LPG. This guideline is not applicable to Oilfield Steam Generators or Electric Utility Steam Generating Units.

Best Available Control Technology (BACT) Guideline 1.1.3*

Last Update: 10/26/2009

Boiler - > 20.0 MMBtu/hr, Natural gas fired, with highly variable loads or high turndown ratios. *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.1.4*

Last Update: 10/26/2009

Digester Gas Fired Boiler *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.1.5*

Last Update: 10/26/2009

Boiler-Dual Fuel for Facilities Requiring Liquid Backup Fuel *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.1.6*

Last Update: 10/26/2009

Boiler - Fired with a High-Ammonia Fuel *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.1.7*

Last Update: 10/26/2009

Limited Use Boiler - Natural Gas Fired, < 9 Billion Btu/yr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.1.8*

Last Update: 10/26/2009

Biomass-fired Boiler - Grate Systems *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.2.1*

Last Update: 4/11/2023

Oilfield Steam Generator (> or = 20 MMBtu/hr) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.2.2*

Last Update: 10/26/2009

Steam Generator - >20.0 MMBtu/Hr Vertically Oriented w/Counterflow Heat Transfer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.2.3*

Last Update: 5/1/2004

Oilfield Steam Generator/TEOR Gas Incinerator **RESCINDED - part of 5/04 update to guideline 1.2.1**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.3.1*

Last Update: 8/27/2005

Fluidized-Bed Combustor => 272 MMBtu/hr, Cogeneration Operation, Fired with Delayed Petroleum Coke (DPC)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	0.008 lb/MMBtu, natural gas and fuel oil as auxiliary fuel		
SOx	20.2 ppmvd (as SO2 corrected to 3% O2) (DPC with 2% sulfur by weight) or lowest sulfur content fuel available when 2% sulfur by weight fuel is not available, Sorbent injection and natural gas and low-sulfur fuel oil (15 ppmvd sulfur or less), as auxiliary fuel	lowest sulfur content DPC fuel available, with Sorbent Injection and scrubber; natural gas and low-sulfur fuel oil (15 ppmvd sulfur or less), as auxiliary fuel	
PM10	0.005 gr/dscf corrected to 12% CO2, baghouse, natural gas and low sulfur fuel oil as auxiliary fuel		
NOx	28 ppmvd (as NO2 corrected to 3% O2), ammonia injection (less than 30 ppmvd ammonia slip) and natural gas and fuel oil as auxiliary fuel)		
СО	natural gas and fuel oil as auxiliary fuel		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.3.2*

Last Update: 3/12/2012

Fluidized Bubbling Bed Combustor (biomass-fired) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.1*

Last Update: 11/7/2016

Waste Gas Flare - 15.3 MMBtu/hr, Serving a Tank Vapor Control System *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.2*

Last Update: 11/7/2016

Waste Gas Flare - Incinerating Produced Gas *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.3*

Last Update: 1/12/2021

Landfill Gas Vapor Collection System

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of an enclosed ultra-low NOx flare with a control efficiency of ≥ 98% or a controlled VOC emissions concentration of ≤ 20 ppmvd @ 3% O2 (as hexane, equivalent to 0.038 lb-VOC/MMBtu) and a NOx emissions rate of ≤ 0.025 lb-NOx/MMBtu		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.4*

Last Update: 11/7/2016

Digester Gas-Fired Flare *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.5*

Last Update: 11/7/2016

Oilfield Waste Gas Incinerator *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.6*

Last Update: 11/7/2016

Biogas-Fired Flare: = or > 10.9 MMBtu/hr, Limited Use * RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.7*

Last Update: 11/7/2016

Waste Gas Flare - Oilfield Well Drilling and Testing Operation, < 50 MMscf/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.4.8*

Last Update: 11/7/2016

Refinery Flare *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.1*

Last Update: 8/16/2023

Fiberglass Production Furnace and Manufacturing Line, Natural Gas-Fired *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.2*

Last Update: 8/16/2023

Flat Glass Production Float Furnace *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.3*

Last Update: 5/11/2022

Existing flat glass furnace with a 3R system and a backup thermal De-NOx system *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.4*

Last Update: 5/18/2020

Metal Melting Crucible/Furnace *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.5*

Last Update: 8/16/2023

Glass Bottle Label Curing Lehr - < 10 MMBtu/hr, Natural Gas Fired *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.6*

Last Update: 8/16/2023

Metal Heat Treatment Oven *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.7*

Last Update: 8/16/2023

Glass Furnace Forehearth *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.8*

Last Update: 8/16/2023

Container Glass Production - Container Glass Distributor *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.9*

Last Update: 8/16/2023

Container Glass Melting Furnace *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.10*

Last Update: 10/9/2018

Container Glass Annealing Lehr

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Utilize PUC quality natural gas fuel with LPG as backup fuel		Electric Annealing Lehr
SOx	Utilize PUC quality natural gas fuel with LPG as backup fuel		Electric Annealing Lehr
PM10	Utilize PUC quality natural gas fuel with LPG as backup fuel		Electric Annealing Lehr
NOx	Utilize burner system with 60 ppmvd NOx @ 3% O2 or 0.073 lb-NOx/MMBtu fired on PUC quality natural gas, and LPG as backup fuel		Electric Annealing Lehr
СО	Utilize burner system with 20 ppmv CO @ 3% O2 or 0.015 lb-CO/MMBtu fired on PUC quality natural gas, and LPG as backup fuel		Electric Annealing Lehr

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.11*

Last Update: 5/21/2020

Container Glass Production - Mold Swabbing Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Using best management practices and the judicial use of mold swabbing material (< or = 0.211 lb of material per ton of glass produced) with PM10 emissions of 0.19 lb/ton of glass formed		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.12*

Last Update: 7/7/2020

Secondary Aluminum Melting: Sweat Furnace, Holding Furnace and Reverb Furnace

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Sweat Furnaces: Afterburner (≥0.3 sec retention time at ≥1,400°F) or secondary combustion chamber		
	Holding and Reverb Furnaces (non-sweating): None		
SOx	Use natural gas fuel		
PM10	Sweat Furnaces: Use of natural gas fuel, afterburner with 1400°F chamber temperature, and a baghouse with fabric filters		
	Holding and Reverb Furnaces (non-sweating): Use of natural gas fuel and a baghouse with fabric filters		
Nox	Sweat Furnaces: 50 ppmvd @ 3% O2 (Use of Low-NOx Burners)	Sweat, Holding, and Reverb Furnaces: 1) 6.0 ppmvd @ 3% O2 (Use of Low-NOx Burners and Selective Catalytic Reduction)	Use of Electric Furnaces
	Holding Furnaces: 40 ppmvd @ 3% O2 (Use of Low-NOx Burners)	2) 12.0 ppmvd @ 3% O2 (Use of Low-NOx Burners and Regenerative Selective Catalytic	
	Reverb Furnaces (non- sweating):	Reduction)	
	53 ppmvd @ 3% O2 (Use of Low-NOx Burners)	3) 30 ppmvd @ 3% O2 (Use of Low-NOx Burners and Selective Non-Catalytic Reduction)	
СО	Use natural gas fuel	1) 5 ppmvd @ 3% O2, Oxidation catalyst or equivalent control;	Use of Electric Furnaces
		2) 50 ppmvd @ 3% O2	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.5.13*

Last Update: 8/16/2023

Aluminum Diecasting Furnace *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.1*

Last Update: 4/14/2020

Vegetable Dry Roasting Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
NOX	60 ppmv @ 3% O2 (equivalent to 6.5 ppmv @ 19% O2 or 0.073 lb- NOX/MMBtu)	9 ppmv @ 3% O2 (equivalent to 1.0 ppmv @ 19% O2 or 0.011 lb-NOX /MMBtu) or less with Selective Catalytic Reduction	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.2*

Last Update: 4/20/2020

Oven - Tortilla, <= 5 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.3*

Last Update: 2/21/2020

Snack Chip Fryer with Indirect-Fired Heat Transfer System

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	COMBUSTION EMISSIONS: Use PUC quality natural gas fuel with LPG/Propane as backup fuel FRYING PROCESS EMISSIONS:	FRYING PROCESS EMISSIONS: 1) 85% control (combined VOC and PM control by thermal oxidizer, or equal); 2) 80% control (combined VOC and PM control by carbon adsorber, or equal)	
	None		
SOx	Use PUC quality natural gas fuel with LPG/Propane as backup fuel		
PM10	COMBUSTION EMISSIONS: Use PUC quality natural gas fuel with LPG/Propane as backup fuel	FRYING PROCESS EMISSIONS: 1) 85% control (combined VOC and PM control by thermal oxidizer, or equal); 2) 80% control (combined VOC and PM control by carbon adsorber, or equal)	
	FRYING PROCESS EMISSIONS: 75% control (oil mist eliminator or equal)		
NOx	9 ppmvd @ 3% O2 for units greater than 5 MMBtu/hr to less than or equal to 20 MMBtu/hr		
	7 ppmvd @ 3% O2 for units greater than 20 MMBtu/hr		
СО	100 ppmvd @ 3% O2		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.4*

Last Update: 6/21/2023

Snack Chip Oven

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of PUC quality natural gas		
SOx	Use of PUC quality natural gas		
PM10	Use of PUC quality natural gas		
NOx	30 ppmvd @ 3% O2 (0.036 lb/MMBtu) with use of low-NOx burner system and using natural gas as primary fuel, or equivalent controls	Low temperature selective catalytic reduction (SCR) to achieve 2.5 ppmvd NOx @ 3% O2 (0.003 lb/MMBtu) and use of PUC quality natural gas fuel, or equivalent controls	
СО	400 ppmvd @ 3% O2 and use of PUC quality natural gas		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.5*

Last Update: 4/20/2020

Cornnut (tm) cooker *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.6*

Last Update: 4/20/2020

Peanut Roasting Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.7*

Last Update: 5/11/2022

Pistachio Roasting Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.8*

Last Update: 11/1/2022

Pistachio Nut Column Dryer (including Silo Heaters and Sample Dryers rated < 5 MMBtu/hr)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Natural gas, or Post of the second		
SOx	1) PUC-quality natural gas, or 2) LPG for operations with no access to a PUC-quality natural gas fuel source		
PM10	Natural gas, or Description or Description or Description Section of the section of		
NOx	1) Low NOX burner and natural gas @ 0.0832 lb-NOX/MMBtu, or 2) Low NOX burner and LPG @ 0.1248 lb-NOX/MMBtu for operations with no access to a natural gas fuel source	Low NOx burner and natural gas @ 0.024 lb-NOx/MMBtu	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.9*

Last Update: 5/11/2022

Dryer - Almond Processing, < 10 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.10*

Last Update: 5/11/2022

Oven - Wheat Drying, < or = 10 MMBtu/hour *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.11*

Last Update: 5/9/2019

Direct-Fired Dairy Products Spray Dryer

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of PUC quality natural gas fuel with LPG as backup fuel		
SOx	Use of PUC quality natural gas fuel with LPG as backup fuel		
PM10	Use of a baghouse/dust collector and PUC quality natural gas fuel with LPG as backup fuel		
NOx	Use of a 2.2 ppmv NOx @ 19% O2 (equivalent to 20 ppmv NOx @ 3% O2 or 0.0243 lb-NOx/MMBtu) low NOx burner (or equivalent) fired on PUC quality natural gas with LPG as backup fuel	Use of a 1.0 ppmv NOx @ 19% O2 (equivalent to 9 ppmv NOx @ 3% O2 or 0.0109 lb-NOx/MMBtu) ultra low NOx burner (or equivalent) fired on PUC quality natural gas with LPG as backup fuel	
СО	Use of a 42 ppmv CO @ 19% O2 (equivalent to 387 ppmv CO @ 3% O2 or 0.286 lb-CO/MMBtu) burner (or lower) fired on PUC quality natural gas with LPG as backup fuel		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.12*

Last Update: 5/11/2022

Dryer - Whey, Filtermat, < 50 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.13*

Last Update: 11/17/2020

Dehydrator - Vegetable, Continuous Process *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.14*

Last Update: 5/11/2022

Dehydrator Tunnel - Fruit, Natural Gas Fired *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.15*

Last Update: 5/9/2019

Dryer - Milk Spray, < 20 MMBtu/hr **RESCINDED - see Guideline 1.6.11**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.16*

Last Update: 5/11/2022

Dryer - Seed Processing, < 20 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.17*

Last Update: 4/20/2020

Food Preparation Oven, <800 degrees Fahrenheit, = or < 3.7 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.18*

Last Update: 4/20/2020

Chicken Fryer - Natural Gas-Fired, Continuous Process, = or < 7 tons/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.19*

Last Update: 4/20/2020

Meat Smokehouse - Natural Gas-Fired, < or = 2 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.20*

Last Update: 8/16/2023

Feather Meal Processing Rotary Dryer - Natural Gas Fired, High Ammonia Environment *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.21*

Last Update: 4/20/2020

Flake Cereal Dryer - < 20 MMBtu/hr, Conveyor-fed *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.22*

Last Update: 7/1/2020

Wood Drying Kiln

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Natural gas (good operating practice and maintenance)	 98% or greater capture and control (thermal oxidizer, catalytic oxidizer or equivalent) 	
		 95% or greater capture and control (carbon adsorption, provided the contaminated air stream does not contain any ingredient that could combust as a result of adsorption to carbon or equivalent) 	
SOx	Natural gas (good operating practice and maintenance)		
PM10	Natural gas (good operating practice and maintenance)		
Nox	Natural gas (good operating practice and maintenance)	1) ≤ 10 ppmvd @ 3% O2 (equivalent to 0.012 lb/MMBtu or less)	
		2) ≤ 15 ppmvd @ 3% O2 (equivalent to 0.018 lb/MMBtu or less)	
СО	Natural gas (good operating practice and maintenance)	≤ 25 ppmvd @ 3% O2	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.23*

Last Update: 8/16/2023

Pistachio, Almond, and Walnut Dryers (<10 MMBtu/hr and <2,160 hr/yr) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.24*

Last Update: 12/30/2020

Commercial Bakery Oven

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Overall 98% capture and control efficiency with the use of thermal/catalytic incineration (or equivalent) with NOx emissions ≤ 60 ppmvd @ 3% O2 (0.073 lb-NOx/MMBtu) for thermal/catalytic incinerator units rated equal to or greater than 0.325 MMBtu/hr, and CO emissions of 800 ppmvd @ 3% O2 (or less) for thermal/catalytic incinerator units		
SOx	Use PUC quality natural gas fuel		
PM10	Use PUC quality natural gas fuel		
Nox	30 ppmvd @ 3% O2 equivalent to 0.036 lb/MMBtu and use of PUC quality natural gas fuel	Use of low Temperature – Selective Catalytic Reduction	Electric Oven
СО	800 ppmvd @ 3% O2 and use of PUC quality natural gas fuel		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.25*

Last Update: 12/29/2021

Blood Drying Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	95% Overall Capture and Control Efficiency (Incineration at 1,600 °F for not less than 0.5 seconds, or equal)		
PM10	0.579 lb-PM10/ton of dried blood		
NH3	0.6 lb-NH3/ton of dried blood (Venturi Scrubber vented to Packed Bed Scrubber, thermal oxidizer, or equal)	Wet scrubber for NH3 removal prior to thermal oxidizer (only if thermal oxidizer is used and the oxidation of NH3 results in more than 2.0 lb/day of NOx emissions)	
H2S		Wet scrubber for H2S removal prior to thermal oxidizer (only if thermal oxidizer is used and the oxidation of H2S results in more than 2.0 lb/day of SOx emissions)

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.26*

Last Update: 8/16/2023

Rotary Kiln Dryer for Poultry Litter* Processing *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.28*

Last Update: 8/16/2023

Direct-Fired Conveyorized Hotdog Cooking Oven *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.29*

Last Update: 8/16/2023

Indirect-fired Impingement Meatball Cooking Oven *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.30*

Last Update: 3/24/2022

Heat-Sterilizing Kiln for Wood, Gaseous Fuel Fired

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of natural gas-fired kiln, or LPG-fired kiln (for operations with no access to a natural gas fuel source)		
SOx	Use of natural gas-fired kiln, or LPG-fired kiln (for operations with no access to a natural gas fuel source)		
PM10	Use of natural gas-fired kiln, or LPG-fired kiln (for operations with no access to a natural gas fuel source)		
NOx	Use of natural gas-fired kiln, or LPG-fired kiln (for operations with no access to a natural gas fuel source)	 Ultra-low NOx burner rated at ≤ 10 ppmvd @ 3% O2 using natural gas or LPG Low NOx burner rated at ≤ 30 ppmvd @ 3% O2 using natural gas, or ≤ 40 ppmvd @ 3% O2 using LPG (for operations with no access to a natural gas fuel source) 	
СО	Use of natural gas-fired kiln, or LPG-fired kiln (for operations with no access to a natural gas fuel source)	Burner rated at ≤ 25 ppmvd @ 3% O2	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.6.31*

Last Update: 5/14/2024

Chain-driven Charbroiler

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Catalytic Oxidizer (86% control for VOC)		
PM10	Catalytic Oxidizer (83% control for PM10)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.7.1*

Last Update: 8/16/2023

Oven - Polyethylene Curing, = or < 20 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.7.2*

Last Update: 5/11/2022

Oven - Plastisol curing/fusing, = or < 2.5 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.7.3*

Last Update: 5/11/2022

Oven - Parts Cleaning, Burnoff or Burnout *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.8.1*

Last Update: 10/26/2009

Refinery Heater, fired on refinery fuel gas and/or natural gas (< or = 50 MM Btu/hr) **RESCINDED**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.8.2*

Last Update: 10/26/2009

Refinery Heater, fired on refinery fuel gas and/or natural gas (> 50 MM Btu/hr) **RESCINDED**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.8.3*

Last Update: 10/26/2009

Gas Dehydration - Glycol Reboiler **RESCINDED**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.8.4*

Last Update: 10/26/2009

Heater Treater < 20 MMBtu/hr, Natural Gas Fired **RESCINDED**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.8.5*

Last Update: 3/29/2023

Process heaters** with heat input rate =< 20 MMBtu/hr

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	PUC quality natural gas or propane with LPG backup		
SOx	PUC quality natural gas or propane with LPG backup		
PM10	PUC quality natural gas or propane with LPG backup		
NOx	9 ppmvd @ 3% O2 (0.011 lb/MMBtu)	5 ppmvd @ 3% O2 (0.0061 lb/MMBtu)	
СО	50 ppmvd @ 3% O2 (0.037 lb/MMBtu)		

^{**}This guideline is applicable to units fired solely on natural gas from a PUC regulated source or propane/LPG. This guideline is not applicable to Refinery Units, Oilfield Steam Generators, or Electric Utility Steam Generating Units.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.8.6*

Last Update: 3/1/2024

Natural Gas-Fired Process Heater (> 20 MMBtu/hr)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
SOx	Use of PUC-Quality Natural Gas		
PM10	Use of PUC-Quality Natural Gas		
NOx	5 ppmvd @ 3% O2	2.5 ppmvd @ 3% O2	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.8.7*

Last Update: 3/1/2024

Hydrogen Production - Steam Hydrocarbon Reformer: Process Heater

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
SOx	Process heater firing on a fuel meeting the District Rule 4320 fuel sulfur requirement of 5 grains		Hydrogen production via electrolysis
			2) Hydrogen production via partial oxidation process**, autothermal reforming or gasification
PM10	Process heater meeting a limit of 0.0039 lb/MMBtu		Hydrogen production via electrolysis
			Hydrogen production via partial oxidation process**, autothermal reforming or gasification
NOx	Process heater meeting a limit of 2.7 ppmv @ 3% O2	Process Heater meeting 2.5 ppmv @ 3% O2	Hydrogen production via electrolysis
			Hydrogen production via partial oxidation process**, autothermal reforming or gasification

^{**} Partial oxidation includes the Grannus Process™ (2023)

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.1*

Last Update: 5/11/2022

Metal Parts Washer - Natural Gas-fired *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.2*

Last Update: 4/20/2020

Sulfuric Acid Plant Start-up Heater - < 15 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.3*

Last Update: 6/9/2022

Crematory (Funeral Service and Crematories, Animal Crematory) - Gaseous Fuel Fired

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Natural Gas/LPG fuel and a secondary combustion chamber (afterburner) > 1,600 ° F		
SOx	Natural Gas/LPG fuel	Natural Gas/LPG fuel with a Dry Scrubber and a Baghouse	
PM10	Natural Gas/LPG fuel and a secondary combustion chamber (afterburner) > 1,600 ° F	Natural Gas/LPG fuel with a Baghouse	
NOx	Natural Gas/LPG fuel and 60 ppmv @ 3% O2 (0.073 lb/MMBtu) without charge		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.4*

Last Update: 5/11/2022

Dryer - Natural Gas Fired, Solvent-Laden Towels, = or < 950 lb towels/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.5*

Last Update: 5/11/2022

Gas Absorption Chiller - Natural Gas Fired, < 20 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.6*

Last Update: 8/16/2023

Asphalt-Surface-Repair Heater, Propane Fired, < 20 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.7*

Last Update: 8/16/2023

Auxiliary Burner System, Dryer, Natural Gas Fired, < 20 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.8*

Last Update: 4/20/2020

Municipal-waste Incinerator - < 750 lb waste/hr feed rate *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.9*

Last Update: 8/16/2023

Molded Paper Products Dryer - Natural Gas Fired, < 20 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.10*

Last Update: 8/16/2023

Mineral Products Spray Dryer - Natural Gas Fired, < or = 20 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.11*

Last Update: 7/1/2020

Commercial Laundry Dryer, Natural Gas-Fired - < 5.0 MMBtu/hr

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of PUC quality natural gas fuel		
SOx	Use of PUC quality natural gas fuel		
PM10	Use of a lint collector with a control efficiency of ≥ 75% or equivalent and PUC quality natural gas fuel	 1) Use of a baghouse with a control efficiency of ≥ 99% or equivalent and PUC quality natural gas fuel 2) Use of a venturi scrubber with a control efficiency of ≥ 90% or equivalent and PUC quality natural gas fuel 	
Nox	Use of 30 ppmvd NOx @ 3% O2 (equivalent to 0.0365 lb-NOx/MMBtu) low NOx burner (or equivalent) fired on PUC quality natural gas fuel	Use of 9.2 ppmvd @ 3% O2 (equivalent to 0.0111 lb-NOx/MMBtu) ultra-low NOx burner (or equivalent) fired on PUC quality natural gas fuel	
СО	Use of 114 ppmvd CO @ 3% O2 (equivalent to 0.084 lb-CO/MMBtu) burner (or lower) fired on PUC quality natural gas fuel	Use of 4.6 ppmvd CO @ 3% O2 (equivalent to 0.0034 lb-CO/MMBtu) burner fired on PUC quality natural gas fuel	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.12*

Last Update: 4/20/2020

Transportable Diesel-Fired Nitrogen Vaporizer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.13*

Last Update: 8/16/2023

Blood Meal Processing Ring Dryer Burner *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.14*

Last Update: 8/16/2023

Natural Gas Fired Dryer with High Turndown Ratio *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.15*

Last Update: 4/20/2020

Jet Aircraft Fire Training Facility *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 1.9.16*

Last Update: 8/16/2023

Power Oxidizer - VOC Incineration and Power Generation, < or = 35 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.